Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 827228, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923392

RESUMO

Nitrogen cycle has been poorly investigated in Antarctic ecosystems. In particular, how extreme conditions of low temperature, dryness, and high radiation select the microorganisms involved in the cycle is not yet understood. Denitrification is an important step in the nitrogen cycle in which nitrate is reduced stepwise to the gases NO, N2O, and N2. Denitrification is carried out by a wide group of microorganisms spread in the phylogenetic tree. The aim of this work was to isolate and characterize denitrifying bacteria present in different cold environments from Antarctica. Bacterial isolates were obtained from lake, meltwater, sea, glacier ice, ornithogenic soil, and penguin feces samples from King George Island, Fildes peninsula in the Antarctic. Samples were taken during the deicing season in five sampling campaigns. From all the samples we were able to isolate denitrifying strains. A total of 199 bacterial isolates with the capacity to grow in anaerobic mineral media reducing nitrate at 4°C were obtained. The characterization of the isolates by 16S rRNA gene sequence analysis showed a high predominance of the genus Pseudomonas, followed by Janthinobacterium, Flavobacterium, Psychrobacter, and Yersinia. Other minor genera detected were Cryobacterium, Iodobacter, Kaistella, and Carnobacterium. The capacity to denitrify was not previously described for most of the bacteria related to our isolates and in many of them denitrifying genes were not present suggesting the presence of new genes in this extreme environment. Our work demonstrates the ubiquity of denitrification in the Maritime Antarctica and gives important information linking denitrification at cold temperature with taxa in an unequivocal way.

2.
MethodsX ; 7: 100754, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021817

RESUMO

Biohydrogen production potential (BHP) depends on several factors like inoculum source, substrate, pH, among many others. Batch assays are the most common strategy to evaluate such parameters, where the comparison is a challenging task due to the different procedures used. The present method introduces the first internationally validated protocol, evaluated by 8 independent laboratories from 5 different countries, to assess the biohydrogen potential. As quality criteria, a coefficient of variation of the cumulative hydrogen production (H max) was defined to be <15 %. Two options to run BHP batch tests were proposed; a manual protocol with periodic measurements of biogas production, needing conventional laboratory materials and analytical equipment for biogas characterization; and an automatic protocol, which is run in a device developed for online measurements of low biogas production. The detailed procedures for both protocol options are presented, as well as data validating them. The validation showed acceptable repeatability and reproducibility, measured as intra- and inter-laboratory coefficient of variation, which can be reduced up to 9 %.

3.
Bioprocess Biosyst Eng ; 42(12): 2035-2046, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31506821

RESUMO

The aim of this study was to understand how the microbial community adapted to changes, including a pH perturbation, occurring during the start-up and operation processes in a full-scale methanogenic UASB reactor designed to treat dairy wastewater. The reactor performance, prokaryotic community, and lipid degradation capacity were monitored over a 9-month period. The methanogenic community was studied by mcrA/mrtA gene copy-number quantification and methanogenic activity tests. A diverse prokaryotic community characterized the seeding sludge as assessed by sequencing the V4 region of the 16S rRNA gene. As the feeding began, the bacterial community was dominated by Firmicutes, Synergistetes, and Proteobacteria phyla. After an accidental pH increase that affected the microbial community structure, a sharp increase in the relative abundance of Clostridia and a decrease in the mcrA/mrtA gene copy number and methanogenic activity were observed. After a recovery period, the microbial population regained diversity and methanogenic activity. Alkaline shocks are likely to happen in dairy wastewater treatment because of the caustic soda usage. In this work, the plasticity of the prokaryotic community was key to surviving changes to the external environment and supporting biogas production in the reactor.


Assuntos
Reatores Biológicos/microbiologia , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Microbiologia da Água , Purificação da Água , Anaerobiose , Archaea/metabolismo , Bactérias Anaeróbias/classificação , Biocombustíveis , Clostridium/classificação , Indústria de Laticínios , Euryarchaeota/metabolismo , Firmicutes/classificação , Concentração de Íons de Hidrogênio , Metano/metabolismo , Microbiota , Proteobactérias/classificação , RNA Ribossômico 16S/genética , Águas Residuárias
4.
Appl Microbiol Biotechnol ; 100(7): 3371-84, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26825820

RESUMO

To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.


Assuntos
Reatores Biológicos/normas , Fermentação , Hidrogênio/metabolismo , Consórcios Microbianos/genética , RNA Ribossômico 16S/genética , Anaerobiose , Clostridium/classificação , Clostridium/genética , Clostridium/metabolismo , Enterobacter/classificação , Enterobacter/genética , Enterobacter/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lactobacillus/classificação , Lactobacillus/genética , Lactobacillus/metabolismo , América Latina , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/metabolismo , Thermotoga maritima/classificação , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Veillonellaceae/classificação , Veillonellaceae/genética , Veillonellaceae/metabolismo
5.
Chem Res Toxicol ; 23(4): 821-35, 2010 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-20170094

RESUMO

Protein tyrosine dimerization and nitration by biologically relevant oxidants usually depend on the intermediate formation of tyrosyl radical ((*)Tyr). In the case of tyrosine oxidation in proteins associated with hydrophobic biocompartments, the participation of unsaturated fatty acids in the process must be considered since they typically constitute preferential targets for the initial oxidative attack. Thus, we postulate that lipid-derived radicals mediate the one-electron oxidation of tyrosine to (*)Tyr, which can afterward react with another (*)Tyr or with nitrogen dioxide ((*)NO(2)) to yield 3,3'-dityrosine or 3-nitrotyrosine within the hydrophobic structure, respectively. To test this hypothesis, we have studied tyrosine oxidation in saturated and unsaturated fatty acid-containing phosphatidylcholine (PC) liposomes with an incorporated hydrophobic tyrosine analogue BTBE (N-t-BOC l-tyrosine tert-butyl ester) and its relationship with lipid peroxidation promoted by three oxidation systems, namely, peroxynitrite, hemin, and 2,2'-azobis (2-amidinopropane) hydrochloride. In all cases, significant tyrosine (BTBE) oxidation was seen in unsaturated PC liposomes, in a way that was largely decreased at low oxygen concentrations. Tyrosine oxidation levels paralleled those of lipid peroxidation (i.e., malondialdehyde and lipid hydroperoxides), lipid-derived radicals and BTBE phenoxyl radicals were simultaneously detected by electron spin resonance spin trapping, supporting an association between the two processes. Indeed, alpha-tocopherol, a known reactant with lipid peroxyl radicals (LOO(*)), inhibited both tyrosine oxidation and lipid peroxidation induced by all three oxidation systems. Moreover, oxidant-stimulated liposomal oxygen consumption was dose dependently inhibited by BTBE but not by its phenylalanine analogue, BPBE (N-t-BOC l-phenylalanine tert-butyl ester), providing direct evidence for the reaction between LOO(*) and the phenol moiety in BTBE, with an estimated second-order rate constant of 4.8 x 10(3) M(-1) s(-1). In summary, the data presented herein demonstrate that LOO(*) mediates tyrosine oxidation processes in hydrophobic biocompartments and provide a new mechanistic insight to understand protein oxidation and nitration in lipoproteins and biomembranes.


Assuntos
Bicamadas Lipídicas/química , Peróxidos/química , Tirosina/química , Espectroscopia de Ressonância de Spin Eletrônica , Hemina/química , Hemina/toxicidade , Peroxidação de Lipídeos , Dióxido de Nitrogênio/química , Dióxido de Nitrogênio/toxicidade , Oxirredução , Peróxidos/toxicidade , Ácido Peroxinitroso/química , Ácido Peroxinitroso/toxicidade , Multimerização Proteica , Tirosina/análogos & derivados , Tirosina/toxicidade , alfa-Tocoferol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...